Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2763, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177751

RESUMO

Differential diagnosis of parkinsonism early upon symptom onset is often challenging for clinicians and stressful for patients. Several neuroimaging methods have been previously evaluated; however specific routines remain to be established. The aim of this study was to systematically assess the diagnostic accuracy of a previously developed 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) based automated algorithm in the diagnosis of parkinsonian syndromes, including unpublished data from a prospective cohort. A series of 35 patients prospectively recruited in a movement disorder clinic in Stockholm were assessed, followed by systematic literature review and meta-analysis. In our cohort, automated image-based classification method showed excellent sensitivity and specificity for Parkinson Disease (PD) vs. atypical parkinsonian syndromes (APS), in line with the results of the meta-analysis (pooled sensitivity and specificity 0.84; 95% CI 0.79-0.88 and 0.96; 95% CI 0.91 -0.98, respectively). In conclusion, FDG-PET automated analysis has an excellent potential to distinguish between PD and APS early in the disease course and may be a valuable tool in clinical routine as well as in research applications.


Assuntos
Diagnóstico por Computador , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Diagnóstico Diferencial , Humanos , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-32880702

RESUMO

We have studied dark-adaptation at three levels in the eyes of the crustacean Mysis relicta over 2-3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cis retinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity (by ERG). We compare two model populations ("Sea", Sp, and "Lake", Lp) inhabiting, respectively, a low light and an extremely dark environment. 11-cis retinal reached 60-70% of the pre-exposure levels after 2 weeks in darkness in both populations. The only significant Lp/Sp difference in the retinoid cycle was that Lp had much higher levels of retinol, both basal and light-released. In Sp, rhodopsin restoration and eye photoresponse recovery parallelled 11-cis retinal regeneration. In Lp, however, even after 3 weeks only ca. 25% of the rhabdoms studied had incorporated new rhodopsin, and eye photosensitivity showed only incipient recovery from severe depression. The absorbance spectra of the majority of the Lp rhabdoms stayed constant around 490-500 nm, consistent with metarhodopsin II dominance. We conclude that sensitivity recovery of Sp eyes was rate-limited by the regeneration of 11-cis retinal, whilst that of Lp eyes was limited by inertia in photoreceptor membrane turnover.


Assuntos
Crustáceos/fisiologia , Fotofobia/prevenção & controle , Retinoides/metabolismo , Animais , Adaptação à Escuridão , Lagos , Oceanos e Mares , Regeneração , Rodopsina/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26984686

RESUMO

Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra were systematically red-shifted by 20-30 nm compared with S spectra, save for one L and one S population. The difference holds across species and bears no consistent adaptive relation to the current light environments. In the most extensively studied L-S pair, two populations of M. relicta (L(p) and S(p)) separated for less than 10,000 years, no differences translating into amino acid substitutions have been found in the opsin genes, and the chromophore of the visual pigments as analyzed by HPLC is pure A1. However, MSP experiments with spectrally selective bleaching show the presence of two rhodopsins (λ(max) ≈ 525-530 nm, MWS, and 565-570 nm, LWS) expressed in different proportions. ERG recordings of responses to "red" and "blue" light linearly polarized at orthogonal angles indicate segregation of the pigments into different cells differing in polarization sensitivity. We propose that the pattern of development of LWS and MWS photoreceptors is governed by an ontogenetic switch responsive to some environmental signal(s) other than light that generally differ(s) between lakes and sea, and that this reaction norm is conserved from a common ancestor of all three species.


Assuntos
Crustáceos/fisiologia , Meio Ambiente , Fenômenos Fisiológicos Oculares , Rodopsinas Sensoriais/metabolismo , Animais , Crustáceos/classificação , Eletrorretinografia , Olho , Microespectrofotometria , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Especificidade da Espécie , Análise Espectral
4.
PLoS One ; 9(2): e88107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516590

RESUMO

Glacial-relict species of the genus Mysis (opossum shrimps) inhabiting both fresh-water lakes and brackish sea waters in northern Europe show a consistent lake/sea dichotomy in eye spectral sensitivity. The absorbance peak (λmax) recorded by microspectrophotometry in isolated rhabdoms is invariably 20-30 nm red-shifted in "lake" compared with "sea" populations. The dichotomy holds across species, major opsin lineages and light environments. Chromophore exchange from A1 to A2 (retinal → 3,4-didehydroretinal) is a well-known mechanism for red-shifting visual pigments depending on environmental conditions or stages of life history, present not only in fishes and amphibians, but in some crustaceans as well. We tested the hypothesis that the lake/sea dichotomy in Mysis is due to the use of different chromophores, focussing on two populations of M. relicta from, respectively, a Finnish lake and the Baltic Sea. They are genetically very similar, having been separated for less than 10 kyr, and their rhabdoms show a typical lake/sea difference in λmax (554 nm vs. 529 nm). Gene sequencing has revealed no differences translating into amino acid substitutions in the transmembrane parts of their opsins. We determined the chromophore identity (A1 or A2) in the eyes of these two populations by HPLC, using as standards pure chromophores A1 and A2 as well as extracts from bovine (A1) and goldfish (A2) retinas. We found that the visual-pigment chromophore in both populations is A1 exclusively. Thus the spectral difference between these two populations of M. relicta is not due to the use of different chromophores. We argue that this conclusion is likely to hold for all populations of M. relicta as well as its European sibling species.


Assuntos
Crustáceos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Retina/metabolismo , Pigmentos da Retina/metabolismo , Animais , Bovinos , Carpa Dourada , Lagos , Microespectrofotometria , Oceanos e Mares
5.
Aquat Toxicol ; 127: 46-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22348951

RESUMO

Fitness and survival of an organism depend on its ability to mount a successful stress response when challenged by exposure to damaging agents. We hypothesized that co-exposure to contaminants may exacerbate oxidative stress in hypoxia-challenged benthic animals compromising their ability to recover upon reoxygenation. This was tested using the amphipod Monoporeia affinis exposed to hypoxia followed by reoxygenation in sediments collected in polluted and pristine areas. In both sediment types, oxygen radical absorbance capacity (ORAC) and antioxidant enzyme activities [superoxide dismutase (SOD) and catalase (CAT)] increased during hypoxia, suggesting that M. affinis has a strategy of preparation for oxidative stress that facilitates recovery after a hypoxic episode. Exposure to contaminants altered this anticipatory response as indicated by higher baselines of ORAC and SOD during hypoxia and no response upon reoxygenation. This coincided with significantly elevated oxidative damage evidenced by a marked reduction in glutathione redox status (ratio of reduced GSH/oxidized GSSG) and an increase in lipid peroxidation (TBARS levels). Moreover, RNA:DNA ratio, a proxy for protein synthetic activity, decreased in concert with increased TBARS, indicating a linkage between oxidative damage and fitness. Finally, inhibited acetylcholinesterase (AChE) activity in animals exposed to contaminated sediments suggested a neurotoxic impact, whereas significant correlations between AChE and oxidative biomarkers may indicate connections with redox state regulation. The oxidative responses in pristine sediments suggested a typical scenario of ROS production and removal, with no apparent oxidative damage. By contrast, co-exposure to contaminants caused greater increase in antioxidants, lipid peroxidation, and slowed recovery from hypoxia as indicated by CAT, GSH/GSSG, TBARS and AChE responses. These results support the hypothesized potential of xenobiotics to hamper ability of animals to cope with fluctuating hypoxia. They also emphasize the importance of understanding interactions between antioxidant responses to different stressors and physiological mechanisms of oxidative damage.


Assuntos
Anfípodes/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Anfípodes/enzimologia , Anaerobiose , Animais , Biomarcadores/metabolismo , Oxigênio/metabolismo , Análise de Sobrevida
6.
Aquat Toxicol ; 99(2): 263-74, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20617547

RESUMO

In estuaries, hypoxic conditions and pollution are among the major factors responsible for the declines in habitat quality, yet little is known about their combined effects on estuarine organisms. In this study, to investigate single and combined effects of hypoxia and contaminated sediment, the Baltic amphipod Monoporeia affinis was exposed for 5-9 days to four different combinations of oxygen conditions (moderate hypoxia vs. normoxia) and contamination (polluted vs. unpolluted sediments) at environmentally realistic levels. To detect oxidative stress, a suite of biomarkers was used - antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)], acetylcholinesterase (AChE), lipid peroxidation status (TBARS concentration), protein carbonyl content (PCC), and DNA strand breakage (DNA-SB). To assay effects at the organism level, we used RNA:DNA ratio as a proxy for growth and metabolic rate and mortality. There were significant increases in CAT and SOD activities and TBARS levels in response to both moderate hypoxia and contaminated sediment, while GST increased and AChE decreased in response to the contamination only. Significant positive correlations were observed among the antioxidant enzymes and between the enzyme activities and TBARS concentration, suggesting a complex response to the oxidative stress. No significant changes in PCC were recorded in any of the treatments. Furthermore, the negative effect of hypoxia on DNA integrity was significant; with frequency of DNA-SB increasing in animals exposed to hypoxia in contaminated sediment. Despite clear effect at the cellular and biochemical levels, no responses at the organism level were observed. Multivariate analyses of the dataset have allowed us to link exposure factors to individual biomarker responses. Of the potential biomarkers assessed in this study, CAT activity was found to be associated with hypoxia, while SOD, GST and AChE activities appear to predict best the effects of exposure to sediments containing several contaminants (e.g. heavy metals, PCBs and PAHs), and TBARS concentration is particularly indicative of combined effects of hypoxia and contamination. In addition to providing new knowledge on the combined effects of multiple stressors on estuarine organisms, the findings of the present study are also important to understand data from biomonitoring studies in the Baltic Sea and in other regions where multiple stress factors co-occur.


Assuntos
Anfípodes/efeitos dos fármacos , Biomarcadores/análise , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Análise de Variância , Animais , Quebras de DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Enzimas/metabolismo , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Hipóxia , Peroxidação de Lipídeos/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Análise de Sobrevida , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-16133501

RESUMO

Visual-pigment absorbance spectra and eye spectral sensitivities were examined in eight populations of opossum shrimp from different light environments. Four Finnish populations, two from the Baltic Sea and two from freshwater lakes, represent Mysis relicta, sensu stricto. The sibling species M. salemaai and M. diluviana are represented by, respectively, two Baltic Sea populations and two populations from freshwater lakes in Idaho, USA. In M. relicta, the visual pigments of the two lake populations were similar (lambda(max)=554.3+/-0.8 nm and 556.4+/-0.4 nm), but significantly red-shifted compared with the sea populations (at 529 and 535 nm) and with M. salemaai (at 521 and 525 nm). All these pigments had only A2 chromophore and the lake/sea difference indicates adaptive evolution of the opsin. In M. diluviana, lambda(max) varied in the range 505-529 nm and the shapes of spectra suggested varying A1/A2 chromophore proportions, with pure A1 in the 505 nm animals. Eye sensitivity spectra were flatter and peaked at longer wavelengths than the relevant visual-pigment templates, but declined with the same slope beyond ca. 700 nm. The deviations from visual-pigment spectra can be explained by ocular light filters based on three types of identified screening pigments.


Assuntos
Percepção de Cores/fisiologia , Crustáceos/fisiologia , Luz , Pigmentos da Retina/química , Animais , Meio Ambiente , Evolução Molecular , Finlândia , Microespectrofotometria , Retina/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-16010556

RESUMO

We report the first study of the relation between the wavelength of maximum absorbance (lambdamax) and the photoactivation energy (Ea) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments ("Sea" and "Lake") with porphyropsins peaking at lambdamax=529 nm and 554 nm, respectively. The estimation of Ea was based on measurement of temperature effects on the spectral sensitivity of the eye. In accordance with theory (Stiles in Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers' Co., London, 1948), relative sensitivity to long wavelengths increased with rising temperature. The estimates calculated from this effect are Ea,529=47.8+/-1.8 kcal/mol and Ea,554=41.5+/-0.7 kcal/mol (different at P<0.01). Thus the red-shift of lambdamax in the "Lake" population, correlating with the long-wavelength dominated light environment, is achieved by changes in the opsin that decrease the energy gap between the ground state and the first excited state of the chromophore. We propose that this will carry a cost in terms of increased thermal noise, and that evolutionary adaptation of the visual pigment to the light environment is directed towards maximizing the signal-to-noise ratio rather than the quantum catch.


Assuntos
Luz , Pigmentos da Retina/fisiologia , Pigmentos da Retina/efeitos da radiação , Animais , Crustáceos , Especificidade da Espécie , Espectrofotometria/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...